résultant - définition. Qu'est-ce que résultant
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est résultant - définition

POLYNOMIAL EXPRESSION OF THE COEFFICIENTS OF TWO POLYNOMIALS, WHICH IS EQUAL TO ZERO IF AND ONLY IF THE POLYNOMIALS HAVE A COMMON ROOT
Resultants; Eliminant; Macaulay resultant; Multivariate resultant; Macaulay's resultant; Multipolynomial resultant; Polynomial resultant

Resultant         
The line indicating the result of the application of two or more forces to a point. Its direction and length give the elements of direction and intensity. (See Forces, Resolution of Forces, Composition of Components.)
Resultant         
·noun That which results.
II. Resultant ·noun A reultant force or motion.
III. Resultant ·noun An Eliminant.
IV. Resultant ·adj Resulting or issuing from a combination; existing or following as a result or consequence.
Resultant         
In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients, which is equal to zero if and only if the polynomials have a common root (possibly in a field extension), or, equivalently, a common factor (over their field of coefficients). In some older texts, the resultant is also called the eliminant.

Wikipédia

Resultant

In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root (possibly in a field extension), or, equivalently, a common factor (over their field of coefficients). In some older texts, the resultant is also called the eliminant.

The resultant is widely used in number theory, either directly or through the discriminant, which is essentially the resultant of a polynomial and its derivative. The resultant of two polynomials with rational or polynomial coefficients may be computed efficiently on a computer. It is a basic tool of computer algebra, and is a built-in function of most computer algebra systems. It is used, among others, for cylindrical algebraic decomposition, integration of rational functions and drawing of curves defined by a bivariate polynomial equation.

The resultant of n homogeneous polynomials in n variables (also called multivariate resultant, or Macaulay's resultant for distinguishing it from the usual resultant) is a generalization, introduced by Macaulay, of the usual resultant. It is, with Gröbner bases, one of the main tools of elimination theory.